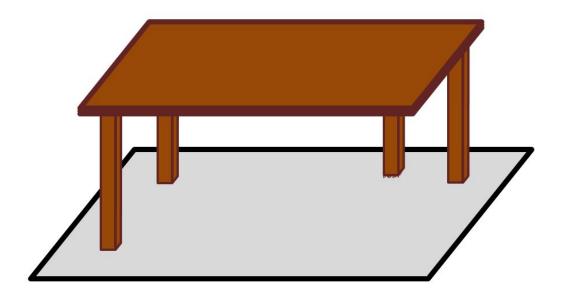
A new paradigm for computer vision based on compositional representation

Vinjai Vale Mentor: Kevin Ellis

Computer vision today

- Image processing, analysis, understanding
- State of the art: deep convolutional neural network (CNN)
- CNNs excel at *classification*, struggle with *representation*

Example



Object compositionality

Represent objects recursively through their components and relations

Enables complex human-level visual reasoning

CNN drawbacks

CNNs learn fuzzy patterns on textures — poor spatial understanding

https://rocknrollnerd.github.io/ml/2015/05/27/leopard-sofa.html https://sleezybarbhorsewear.com/customers-page/

T. Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques for training GANs. CoRR, abs/1606.03498, 2016.

A refrigerator filled with lots of food and drinks.

Research goal

• Engineer domain and dataset to isolate the problem of compositionality

• Develop algorithms, techniques to solve representation tasks on dataset

Primitive elements and ShapeWorld

A small number of *primitive elements* (PEs) compose all objects.

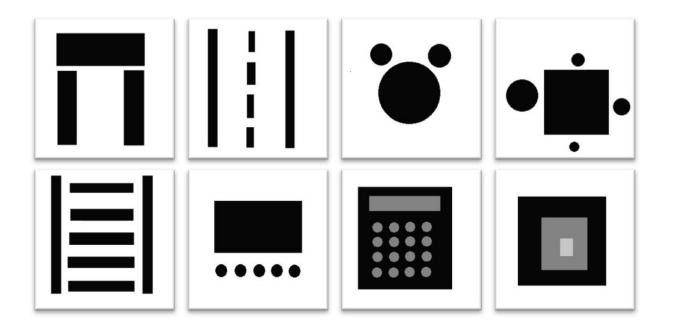
Biederman 1987: 36 geons are the PEs of human vision in 3D world

Key intuition:

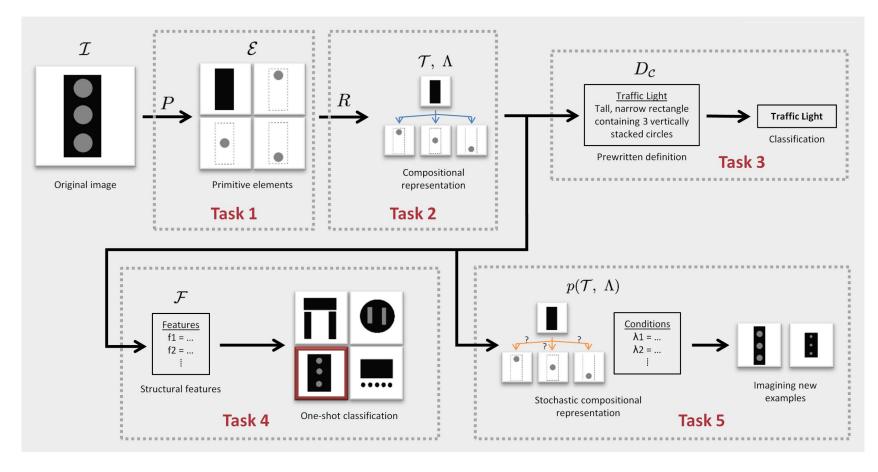
- 3D world with 36 PEs is hard...
- Instead, solve vision in 2D world with only 2 PEs!

Primitive elements and ShapeWorld

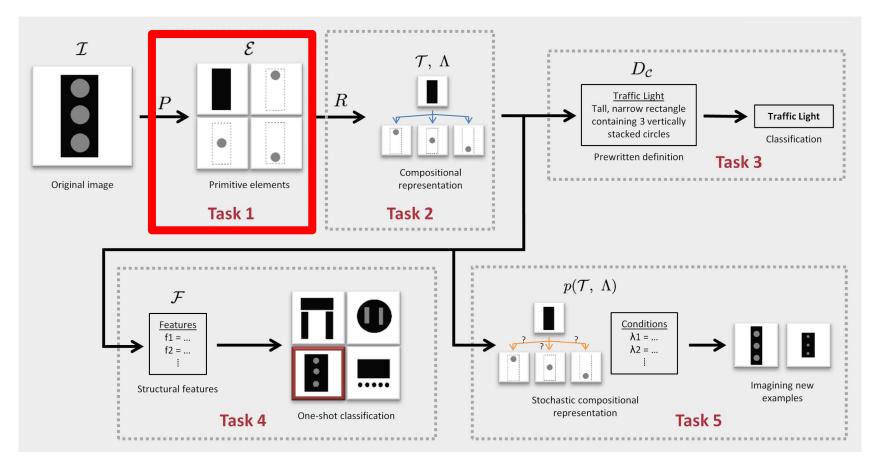
ShapeWorld: 2D dataset composed of circles and rectangles



Five Tasks



Task 1



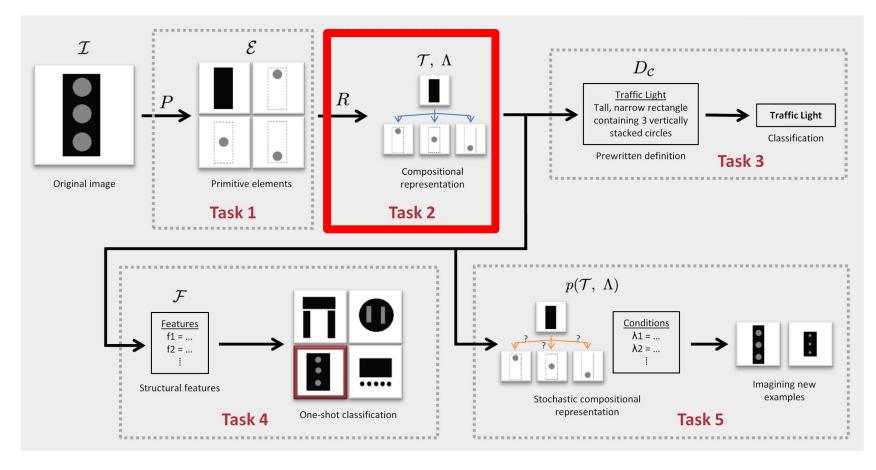
Task 1: PE decomposition

Represent an image in terms of a graphics program

"Draw circle here with these coordinates," "draw rectangle there with those coordinates," etc.

Image processing methods - OpenCV

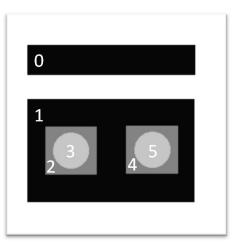
Task 2

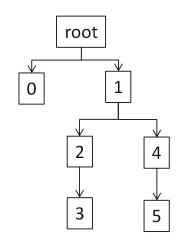


Task 2: Compositional representation

Two-part data structure to encompass compositional relationships

Augmented Primitive Element Tree (APET)



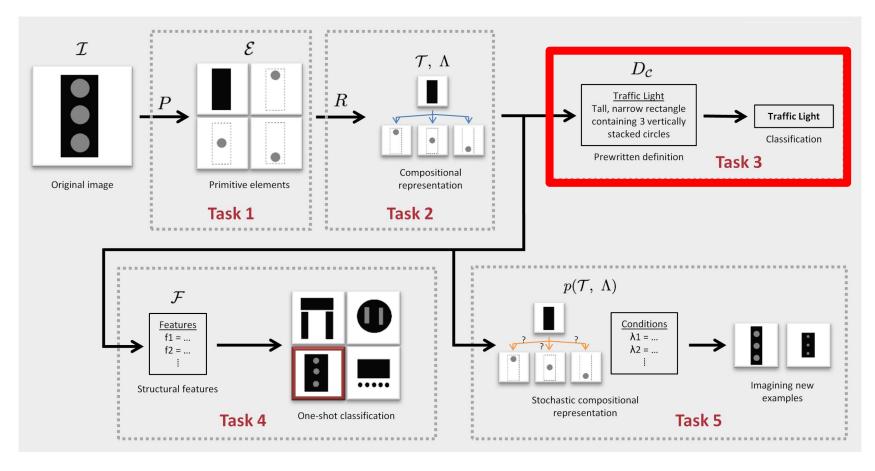


Coincidence List

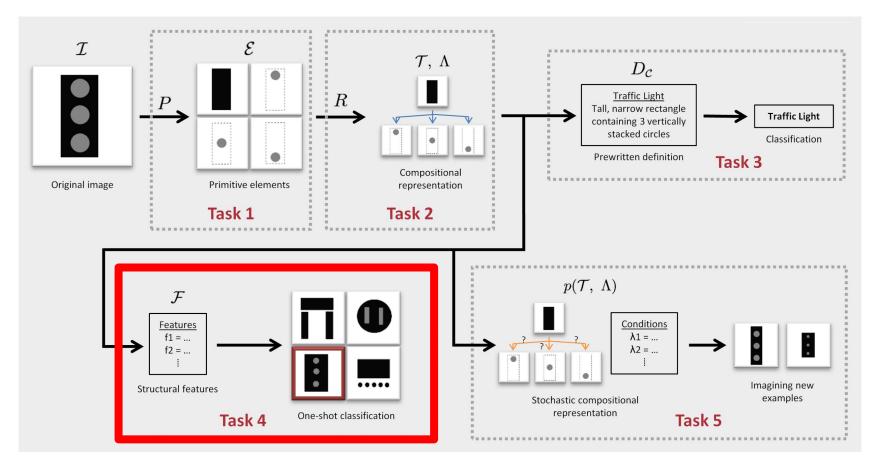
Coincidences likely part of underlying concept

- Rows
- Clusters
- Grids
- Radial arrangement
- Etc.

Task 3



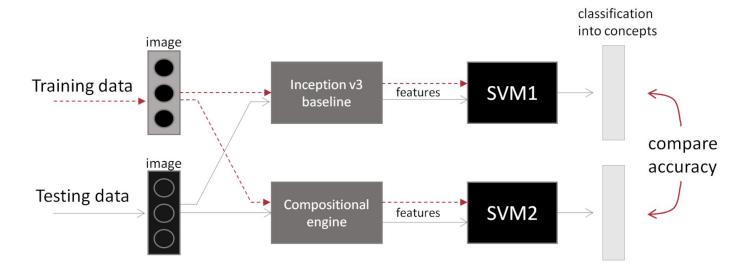
Task 4



Task 4: Baseline comparison

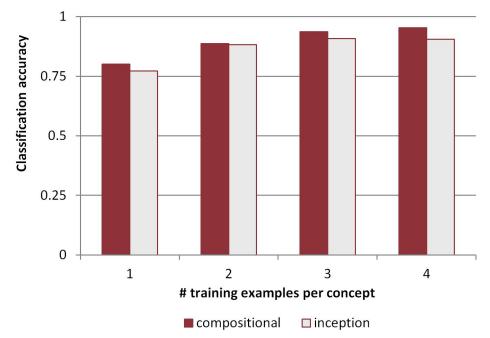
Extracted 34 features from Task 2 compositional representation, compared against 2048 features from Google Inception-v3 CNN

The task: learn to classify a ShapeWorld concept only given 1-4 examples

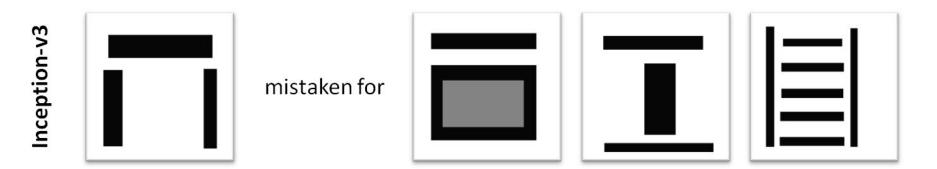


Task 4 results

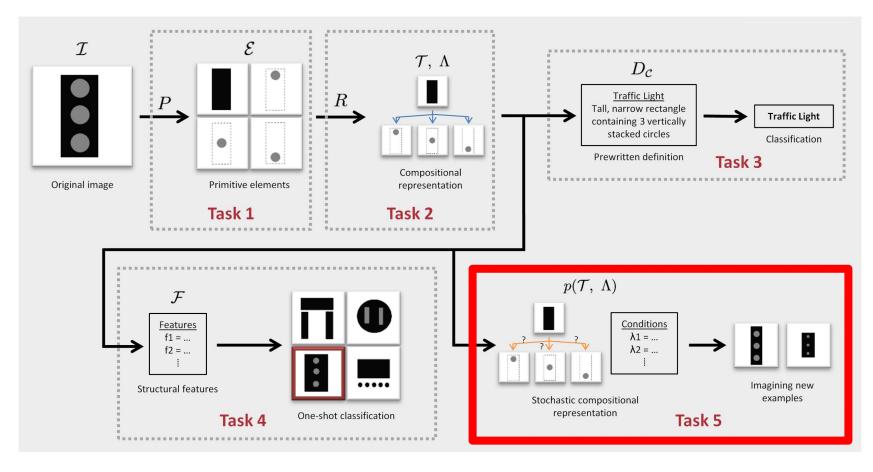
Compositional vs. Google Inception-v3 Features



Task 4 closer inspection



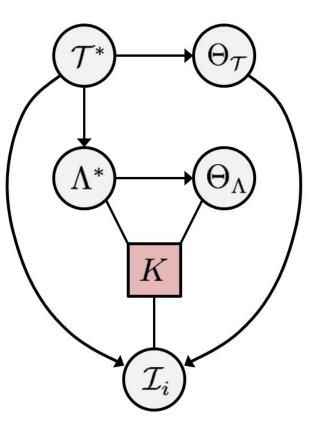
Task 5



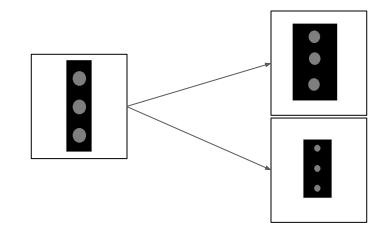
Task 5: Learning a generative model

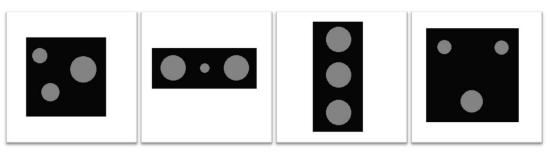
Mathematical model for inferring a probability distribution $P(I, S_c)$: probability that image I belongs to concept C

Task 5: Learning a generative model

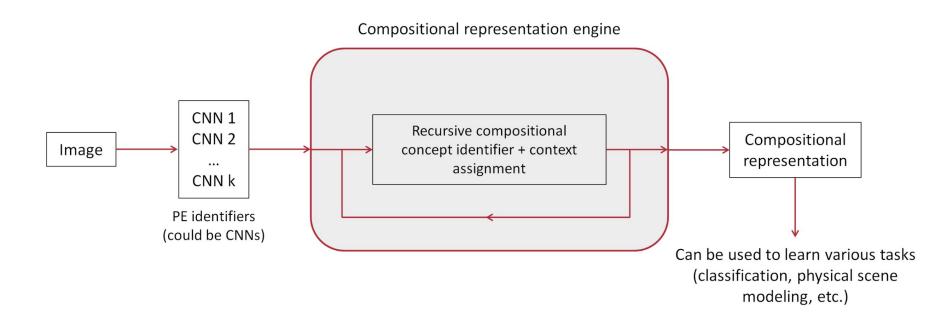


Task 5: Learning a generative model





Beyond



Conclusion

- 1. ShapeWorld dataset following Recognition-by-Components paradigm
- 2. Generate compositional representations of images (APET, Coincidence List)
- 3. Compositional representation feature set outperforms state-of-the-art CNN in object compositionality tasks
- 4. Mathematical, generalizable proabilistic approach to learning stochastic compositional representations

Goal: Al vision systems that are faster, safer, and closer to human vision.

Acknowledgements

Mentor Kevin Ellis @ MIT Brain and Cognitive Sciences

MIT PRIMES Program

Szczesny Kaminski and Sean Campbell, my teachers, for facilitating independent studies in machine learning